Article ID Journal Published Year Pages File Type
1182 Acta Biomaterialia 2010 11 Pages PDF
Abstract

Magneto-resistive sensors capable of detecting superparamagnetic micro-/nano-sized beads are promising alternatives to standard diagnostic assays based on absorbance or fluorescence and streptavidin-functionalized beads are widely used as an integral part of these sensors. Here we have developed an immunomicroarray for systematic studies of the binding properties of 10 different micro-/nano-sized streptavidin-functionalized beads to a biotin substrate immobilized on SiO2 with or without surface modification. SiO2 surface cleaning, immobilized substrate concentration and surface blocking conditions were optimized. Polyethylene glycol-based surfaces with different end groups on the anchor molecule, 2,4,6-trichloro-1,3,5-triazine (TsT), were synthesized and compared with the standard (3-aminopropyl)triethoxysilane (APTS)/glutaraldehyde chemistry. APTS/glutaraldehyde, directly linked TsT and bare H2O2-activated SiO2 performed better than polyethylene glycol-modified surfaces. Two beads, Masterbeads and M-280 beads, were found to give superior results compared with other bead types. Antibody/antigen interactions, illustrated by C-reactive protein, were best performed with Masterbeads. The results provide important information concerning the surface binding properties of streptavidin-functionalized beads and the immunomicroarray can be used when optimizing the performance of bead-based biosensors.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , ,