Article ID Journal Published Year Pages File Type
11840 Biomaterials 2006 10 Pages PDF
Abstract

The interaction between integrins and extracellular matrix proteins play an important role in the regulation of hematopoiesis. Human hematopoietic progenitor cells express very late antigen-4 (VLA-4) and VLA-5, which mediate their interaction with fibronectin by recognizing the connecting segment-1 (CS-1 and RGD motifs, respectively. In this study, we investigated the ex vivo expansion of human umbilical cord blood (UCB) CD34+ cells on synthetic substrates surface-immobilized with peptides containing the CS-1 binding motif (EILDVPST) and the RGD motif (GRGDSPC). These peptides were covalently conjugated to poly(ethylene terephthalate) (PET) film at a surface density of 2.0–2.3 nmol/cm2. UCB CD34+ cells were cultured for 10 days in serum-free medium supplemented with recombinant human thrombopoietin, stem cell factor, flt3-ligand and interleukin 3. The highest cell expansion fold was observed on the CS-1 peptide-modified surface, where total nucleated cells, total colony forming unit, and long-term culture initiating cells were expanded by 589.6±58.6 (mean±s.d.), 76.5±8.8, and 3.2±0.9-fold, respectively, compared to unexpanded cells. All substrates surface-immobilized with peptides, including the control peptides, were more efficient in supporting the expansion of CD34+, CFU-GEMM and LTC-ICs than tissue culture polystyrene surface. Nevertheless, after 10-days of ex vivo expansion from 600 CD34+ cells, only cells cultured on CS-1-immobilized surface yielded positive engraftment, even though the frequency was low. PET surface immobilized with RGD peptide was less efficient than that with CS-1 peptide. Our results suggest that covalently immobilized adhesion peptides can significantly influence the proliferation characteristics of cultured UCB CD34+ cells.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , ,