Article ID Journal Published Year Pages File Type
12145056 Physica A: Statistical Mechanics and its Applications 2019 8 Pages PDF
Abstract
As for the dynamical networks which consist of some high-dimensional nonlinear systems, the problems that researchers are concerned with are usually the asymptotic convergence on some components (rather than all components) of node's state variables under certain condition. This means that partial component synchronization is more meaningful than identical synchronization in some cases. In this paper, the definition of partial component synchronization is given, and then the problem of partial component synchronization on a class of chaotic dynamical networks is investigated. By using matrix theory, stability theory and the hypothesis that several components in the solution vector of a single uncoupled node are ultimately dissipative, some sufficient conditions on partial component synchronization in the chaotic dynamical networks are derived. Finally, numerical simulations are shown to demonstrate the correctness of the theoretical results.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , ,