Article ID Journal Published Year Pages File Type
1267208 Bioelectrochemistry 2013 8 Pages PDF
Abstract

The direct electrochemical behaviour of peptide methionine sulfoxide reductase A (MsrA) adsorbed on glassy carbon and boron doped diamond electrodes surface, was studied over a wide pH range by cyclic and differential pulse voltammetry. MsrA oxidation mechanism occurs in three consecutive, pH dependent steps, corresponding to the oxidation of tyrosine, tryptophan and histidine amino acid residues. At the glassy carbon electrode, the first step corresponds to the oxidation of tyrosine and tryptophan residues and occurs for the same potential. The advantage of boron doped diamond electrode was to enable the separation of tyrosine and tryptophan oxidation peaks. On the second step occurs the histidine oxidation, and on the third, at higher potentials, the second tryptophan oxidation. MsrA adsorbs on the hydrophobic carbon electrode surface preferentially through the three hydrophobic domains, C1, C2 and C3, which contain the tyrosine, tryptophan and histidine residues, and tryptophan exists only in these regions, and undergo electrochemical oxidation.

► Direct electrochemical behaviour of peptide methionine sulfoxide reductase A (MsrA). ► pH-dependent process investigated at a glassy carbon electrode. ► The oxidation of tyrosine, tryptophan and histidine amino acid residues.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, ,