Article ID Journal Published Year Pages File Type
1268136 Bioelectrochemistry 2011 8 Pages PDF
Abstract

A new kind of gold nanoparticles/self-doped polyaniline nanofibers (Au/SPAN) with grooves has been prepared for the immobilization of horseradish peroxidase (HRP) on the surface of glassy carbon electrode (GCE). The ratio of gold in the composite nanofibers was up to 64%, which could promote the conductivity and biocompatibility of SPAN and increase the immobilized amount of HRP molecules greatly. The electrode exhibits enhanced electrocatalytic activity in the reduction of H2O2 in the presence of the mediator hydroquinone (HQ). The effects of concentration of HQ, solution pH and the working potential on the current response of the modified electrode toward H2O2 were optimized to obtain the maximal sensitivity. The proposed biosensor exhibited a good linear response in the range from 10 to 2000 μM with a detection limit of 1.6 μM (S/N = 3) under the optimum conditions. The response showed Michaelis–Menten behavior at larger H2O2 concentrations, and the apparent Michaelis–Menten constant Km was estimated to be 2.21 mM. The detection of H2O2 concentration in real sample showed acceptable accuracy with the traditional potassium permanganate titration.

► Grooved Au/SPAN nanofiber with mass ratio of gold up to 64% has been prepared. ► The Au/SPAN nanofiber was used for the construction of a novel H2O2 biosensor. ► The biosensor showed acceptable accuracy in detection of H2O2 in real sample.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,