Article ID Journal Published Year Pages File Type
1269191 Bioelectrochemistry 2007 6 Pages PDF
Abstract

It is reported for the first time that hemoglobin (Hb) was immobilized on the surface of carbon black powders modified at the surface of a glassy carbon electrode. The cyclic voltammetric results showed that the immobilized Hb could undergo a direct quasi-reversible electrochemical reaction. Its formal potential, E0, is − 0.330 V in phosphate buffer solution (pH 6.9) at a scan rate of 100 mV/s and is almost independent of the scan rate in the range of 40–200 mV/s. The dependence of E0, on the pH of the buffer solution indicated that the conversion of Hb–Fe(III)/Hb–Fe(II) is a one-electron-transfer reaction process coupled with one-proton-transfer. The experimental results also demonstrated that the immobilized Hb retained its bioelectrocatalytic activity for the reduction of H2O2. Furthermore, the immobilized Hb can be stored at 4 °C for several weeks without any loss of the enzyme activity. Thus, the immobilized Hb may be used as a biocathodic catalyst in biofuel cells.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,