Article ID Journal Published Year Pages File Type
1269290 Bioelectrochemistry 2007 7 Pages PDF
Abstract
An ex vivo system for simultaneous detection of nitric oxide (NO) and l-glutamate using integrated dual 250 μm platinum disk electrodes modified individually with suitable sensing chemistries has been developed. One of the sensors was coated with an electrocatalytic layer of Ni tetrasulfonate phthalocyanine tetrasodium salt (Ni-TSPc) covered by second layer of Nafion, which stabilises on the one hand the primary oxidation product NO+ and prevents interferences from negatively charged compounds such as NO2−. For glutamate determination, the second electrode was modified with a crosslinked redox hydrogel consisting of Os complex modified poly(vinylimidazol), glutamate oxidase and peroxidase. A manual x-y-z micromanipulator on top of an inverted optical microscope was used to position the dual electrode sensor at a defined distance of 5 μm from a cell population under visual control. C6 glioma cells were stimulated simultaneously with bradykinin or VEGF to release NO while KCl was used to invoke glutamate release. For evaluation of the glutamate sensors, in some experiments HN10 cells were used. To investigate the sensitivity and reliability of the system, several drugs were applied to the cells, e.g. Ca2+-channel inhibitors for testing Ca2+-dependence of the release of NO and glutamate, rotenone for inducing oxidative stress and glutamate antagonists for analysing glutamate release. With these drugs the NO and glutamate release was modulated in a similar way then expected from previously described systems or even in-vivo measurements. We therefore conclude that our system is suitable to analyse stress-induced mechanisms in cell lines.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , ,