Article ID Journal Published Year Pages File Type
1270610 International Journal of Hydrogen Energy 2014 6 Pages PDF
Abstract

•A noble way to fabricate Ni–Mo HER cathode.•NiMoO4 powders, with fixed Ni/Mo atomic ratio, was used as precursor.•Ni and Mo are uniformly distributed in the electrode.•The resulting electrode is suitable for MEA preparation.

Among the catalysts for hydrogen evolution reaction (HER) in alkaline media, Ni–Mo turns out to be the most active one. Conventional preparations of Ni–Mo electrode involve repeated spraying of dilute solutions of precursors onto the electrode substrate, which is time-consuming and usually results in cracking and brittle electrodes. Here we report a noble fabrication of Ni–Mo electrode for HER. NiMoO4 powder was synthesized and used as the precursor. After reduction in H2 at 500 °C, the NiMoO4 powder layer was converted to a uniform and robust electrode containing metallic Ni and amorphous Mo(IV) oxides. The distribution of Ni and Mo components in this electrode is naturally uniform, which can maximize the interaction between Ni and Mo and benefit the electrocatalysis. The thus-obtained Ni–Mo electrode exhibits a very high catalytic activity toward the HER: the current density reaches 700 mA/cm2 at 150 mV overpotential in 5 M KOH solution at 70 °C. This new fabrication method of Ni–Mo electrode is not only suitable for alkaline water electrolysis (AWE), but also applicable to the alkaline polymer electrolyte water electrolysis (APEWE), an emerging technique for efficient production of H2.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , ,