Article ID Journal Published Year Pages File Type
1271115 International Journal of Hydrogen Energy 2012 5 Pages PDF
Abstract

The solubility and diffusivity of hydrogen in disordered fcc Pd1−xCux alloys are investigated using a combination of first-principles calculations, a composition-dependent local cluster expansion (CDLCE) technique, and kinetic Monte Carlo simulations. We demonstrate that a linear CDCLE model can accurately describe interstitial H in fcc Pd1−xCux alloys over the entire composition range (0 ≤ x ≤ 1) with accuracy comparable to that of direct first-principles calculations. Our predicted H solubility and permeability results are in reasonable agreement with experimental measurements. The proposed model is quite general and can be employed to rapidly and accurately screen a large number of alloy compositions for potential membrane applications. Extension to ternary or higher-order alloy systems should be straightforward. Our study also highlights the significant effect of local lattice relaxations on H energetics in size-mismatched disordered alloys, which has been largely overlooked in the literature.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, ,