Article ID Journal Published Year Pages File Type
1272437 International Journal of Hydrogen Energy 2014 9 Pages PDF
Abstract

•A new Pd-based catalyst using TSCuPc functionalized MWCNTs as support is reported.•Pd nanoparticles are uniformly dispersed on the functionalized MWCNTs surface.•The Pd/TSCuPc-MWCNTs shows excellent catalytic performance for formic acid oxidation.

The hydrothermal synthesis of a novel Pd electrocatalyst using copper phthalocyanine-3,4′,4″,4′″-tetrasulfonic acid tetrasodium salt (TSCuPc) functionalized multi-walled carbon nanotubes (MWCNTs) composite as catalyst support for Pd nanoparticles is reported. The prepared nanocomposites were characterized by UV–vis absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrochemical tests. It is found that Pd nanoparticles are uniformly deposited on the surface of TSCuPc-MWCNTs, and their dispersion and electrochemical active surface area (ECSA) are significantly improved. Studies of cyclic voltammetry and chronoamperometry demonstrate that the Pd/TSCuPc-MWCNTs exhibits much higher electrocatalytic activity and stability than the Pd/AO-MWCNTs catalyst for formic acid oxidation. This study implies that the as-prepared Pd/TSCuPc-MWCNTs will be a promising candidate as an anode electrocatalyst in direct formic acid fuel cell (DFAFC).

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , , ,