Article ID Journal Published Year Pages File Type
1272782 International Journal of Hydrogen Energy 2010 6 Pages PDF
Abstract

The air–steam catalytic gasification of rice husk for hydrogen-rich gas production was experimentally investigated in a combined fixed bed reactor with the newly developed nano-NiO/γ-Al2O3 catalyst. A series of experiments have been performed to explore the effects of catalyst presence, catalytic reactor temperature, the equivalence ratio (ER), and steam to biomass ratio (S/B) on the composition and yield of gasification gases. The experiments demonstrated that the developed nano-NiO/γ-Al2O3 catalyst had a high activity of cracking tar and hydrocarbons, upgrading the gas quality, as well as yielding a high hydrogen production. Catalytic temperature was crucial for the overall gasification process, a higher temperature contributed to more hydrogen production and gas yield. Varying ER demonstrated complex effects on rice husk gasification and an optimal value of 0.22 was found in the present study. Compared with biomass catalytic gasification under air only, the introduction of steam improved the gas quality and yield. The steam/biomass ratio of 1.33 was found as the optimum operating condition in the air–steam catalytic gasification.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,