Article ID Journal Published Year Pages File Type
1272904 International Journal of Hydrogen Energy 2010 10 Pages PDF
Abstract

Fermentative hydrogen production by strict anaerobes has been widely reported. There is a lack of information related to metabolic flux distribution and its variation with respect to fermentation conditions in the metabolic production system. This study aimed to get a better understanding of the metabolic network and to conduct metabolic flux analysis (MFA) of fermentative hydrogen production by a recently isolated Clostridium butyricum strain W5. We chose the specific growth rate as the objective function and used specific H2 production rate as the criterion to evaluate the experimental results with the in silico MFA. For the first time, we constructed an in silico metabolic flux model for the anaerobic glucose metabolism of C. butyricum W5 with assistance of a modeling program MetaFluxNet. The model was used to evaluate metabolic flux distribution in the fermentative hydrogen production network, and to study the fractional flux response to variations in initial glucose concentration and operational pH. The MFA results suggested that pH has a more significant effect on hydrogen production yield compared to the glucose concentration. The MFA is a useful tool to provide valuable information for optimization and design of the fermentative hydrogen production process.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,