Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1272927 | International Journal of Hydrogen Energy | 2010 | 8 Pages |
In this study, an anode-supported solid oxide fuel cell (SOFC) has been prepared using a porous yttria-stabilized zirconia (YSZ) anode matrix. The anode was prepared by impregnating the sintered porous YSZ matrix with a nitrate aqueous containing La3+, Sr2+, Cr3+, Fe3+, Ni2+ and urea. The formed anode exhibited high surface area and porosity, and had fast path for the transportation of oxygen ion and electron, as well as resulting in high three-phase boundaries (TPBs). Single-chamber fuel cell test was conducted in a methane-oxygen gas mixture using an YSZ membrane as the electrolyte and La0.8Sr0.2MnO3−δ (LSM) as the cathode. The influences of environmental temperature and gas composition on the cell performance were also investigated. Under the optimized gas composition (CH4/O2 = 2/1) and furnace temperature (800 °C) conditions, a maximum power density of 214 mW cm−2 was achieved. The test results demonstrated good cell stability and indicated that the perovskite oxide-based anodes were quite robust with redox cycling.