Article ID Journal Published Year Pages File Type
1272935 International Journal of Hydrogen Energy 2010 13 Pages PDF
Abstract

A novel multilayer mixed matrix membrane (MMM), consisting of poly(phenylene oxide) (PPO), large-pore mesoporous silica molecular sieve zeolite SBA-15, and a carbon molecular sieve (CMS)/Al2O3 substrate, was successfully fabricated using the procedure outlined in this paper. The membranes were cast by spin coating and exposed to different gases for the purpose of determining and comparing the permeability and selectivity of PPO/SBA-15 membranes to H2, CO2, N2, and CH4. PPO/SBA-15/CMS/Al2O3 MMMs with different loading weights of zeolite SBA-15 were also studied. This new class of PPO/SBA-15/CMS/Al2O3 multilayer MMMs showed higher levels of gas permeability compared to PPO/SBA-15 membranes. The permselectivity of H2/N2 and H2/CH4 combinations increased remarkably, with values at 38.9 and 50.9, respectively, at 10 wt% zeolite loading. Field emission scanning electron microscopy results showed that the interface between the polymer and the zeolite in MMMs was better at a 10 wt% loading than other loading levels. The increments of the glass transition temperature of MMMs with zeolite confirm that zeolite causes polymer chains to become rigid.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,