Article ID Journal Published Year Pages File Type
1273117 International Journal of Hydrogen Energy 2010 8 Pages PDF
Abstract

Preparation of 3–5 μm thick, hydrogen-selective PdAu layers via sequential electroless plating of Pd and Au onto ceramic microfiltration membranes was investigated employing a cyanide-free Au plating bath. The Au deposition rate was strongly dependent on bath temperature and alkalinity reaching an optimum at 333 K and pH 10. Homogenous alloying of the separate metal layers under atmospheric H2 proved to be a protracted process and required approximately a week at 873 K for a PdAu layer as thin as 3 μm. After 300 h annealing at 823 K the 5 μm thick PdAu layer of a composite membrane still exhibited a Au gradient declining from 7.4 at.% at the top surface to 5.5 at.% at the support interface despite that the H2 permeation rate had become stable. Nonetheless, the membrane exhibited a very high H2 permeability of e.g. 1.3 × 10−8 mol m m−2 s−1 Pa−0.5 at 673 K, but it decreased much faster with temperature below 573 K than above, likely due to a change from bulk H diffusion-controlled to H2 adsorption or desorption-limited transport. The composite membrane withstood cycling between 523 and 723 K in H2 well showing that differing thermal expansion of the joined metallic and ceramic materials stayed within the tolerance range up to 723 K.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,