Article ID Journal Published Year Pages File Type
1273271 International Journal of Hydrogen Energy 2010 5 Pages PDF
Abstract

This paper presents a novel prediction model of the effective hydrogen diffusivity for the gas diffusion layer (GDL) in proton exchange membrane fuel cell (PEMFC) by using fractal theory to characterize microstructure. With the consideration of pore-size distribution and Knudsen diffusion effect, a relationship between micro-structural parameters and effective hydrogen diffusivity of GDL is deduced. The prediction of effective hydrogen diffusivities of two samples shows that Knudsen diffusion effect makes the effective diffusivity value decrease, and after being treated with polytetrafluoroethylene (PTFE), carbon paper, a basal material of the GDL, exhibits a lower effective diffusivity value due to the decrease in the pore space and porosity. From the parametric effect study, it can be concluded that effective diffusivity has a positive correlation with pore area fractal dimension Dp or porosity ɛ, whereas it has a negative correlation with tortuosity fractal dimension Dt.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , ,