Article ID Journal Published Year Pages File Type
1273301 International Journal of Hydrogen Energy 2010 10 Pages PDF
Abstract

The technology of supercritical water gasification can convert coal to hydrogen-rich gaseous product efficiently and cleanly. A novel continuous-flow system for coal gasification in supercritical water was developed successfully in State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF). The experimental device was designed for the temperature up to 800 °C and the pressure up to 30 MPa. The gasification characteristics of coal were investigated within the experimental condition range of temperature at 650–800 °C, pressure at 23–27 MPa and flow rate from 3 kg h−1 to 7 kg h−1. K2CO3 and Raney-Ni were used as catalyst and H2O2 as oxidant. The effects of main operation parameters (temperature, pressure, flow rate, catalyst, oxidant, concentration of coal slurry) upon gasification were carried out. The slurry of 16 wt% coal + 1.5 wt% CMC was successfully transported into the reactor and continuously gasified in supercritical water in the system. The hydrogen fraction reached up to 72.85%. The experimental results demonstrate the bright future of efficient and clean conversion of coal.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , ,