Article ID Journal Published Year Pages File Type
1273464 International Journal of Hydrogen Energy 2014 9 Pages PDF
Abstract

The phase stability and electrical conductivity of a proton-conducting oxide, Ba(Zr0.84Y0.15Cu0.01)O3−δ (BZYCu), sintered under various atmospheres was systematically investigated. The partial pressures of oxygen (PO2)(PO2) and barium (PBa) were used as the tunable experimental parameters to control the surrounding atmosphere during sintering. According to the analysis, the potentially volatile species BaCO3, formed by the decomposition of BZYCu under a CO2-containing atmosphere at around 600 °C, was found to induce barium losses by evaporation. These barium losses, and the associated Y2O3 segregation, were the decisive factor in determining the phase stability and electrical conductivity of the resulting BZYCu; both of these properties deteriorated with barium evaporation. Maintaining the optimum balance of PO2PO2 and PBa during sintering is crucial for minimizing Y2O3 segregation by kinetically suppressing the volatilization of barium.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , ,