Article ID Journal Published Year Pages File Type
1273865 International Journal of Hydrogen Energy 2009 5 Pages PDF
Abstract

Previous studies on the extreme thermophile Caldicellulosiruptor saccharolyticus revealed that the organism produces high yields of hydrogen on glucose and xylose, the major components of lignocellulosic hydrolysates. Preliminary experiments on mixed sugar substrates, however, indicated that xylose was preferred over glucose. The sugar preference of some other extreme thermophiles, including Caldicellulosiruptor owensensis, Caldicellulosiruptor kristjanssonii and newly enriched, thermophilic compost sludge microflora, was investigated in an attempt to find complementary organisms to C. saccharolyticus for rapid and efficient utilization of lignocellulosic sugars. The behavior of C. owensensis and C. kristjanssonii appeared to be similar to that of C. saccharolyticus, either in pure cultures or in co-cultures with the latter. Co-culturing C. saccharolyticus with the enriched compost microflora resulted in fast, simultaneous consumption of both glucose and xylose in the medium with a relatively high specific hydrogen production rate, 40 mmol (gCDW)−1 h−1, and high volumetric productivity, 22.5 mmol l−1 h−1.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, ,