Article ID Journal Published Year Pages File Type
1273877 International Journal of Hydrogen Energy 2009 5 Pages PDF
Abstract

The feasibility of scaling up the production of a Mg-based hydride as material for solid state hydrogen storage is demonstrated in the present work. Magnesium hydride, added with a Zr–Ni alloy as catalyst, was treated in an attritor-type ball mill, suitable to process a quantity of 0.5–1 kg of material. SEM–EDS examination showed that after milling the catalyst was well distributed among the magnesium hydride crystallites. Thermodynamic and kinetic properties determined by a Sievert's type apparatus showed that the semi-industrial product kept the main properties of the material prepared at the laboratory scale. The maximum amount of stored hydrogen reached values between 5.3 and 5.6 wt% and the hydriding and dehydriding times were of the order of few minutes at about 300 °C.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , , , , ,