Article ID Journal Published Year Pages File Type
1274316 International Journal of Hydrogen Energy 2009 9 Pages PDF
Abstract

The kinetics of hydrogen absorption by magnesium bulk is affected by two main activated processes: the dissociation of the H2 molecule and the diffusion of atomic H into the bulk. In order to have fast absorption kinetics both activated processed need to have a low barrier. Here we report a systematic ab initio density functional theory investigation of H2 dissociation and subsequent atomic H diffusion on TM (= Ti, V, Zr, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surfaces. The calculations show that doping the surface with TMs on the left of the periodic table eliminates the barrier for the dissociation of the molecule, but the H atoms bind very strongly to the TM, therefore hindering diffusion. Conversely, TMs on the right of the periodic table do not bind H, however, they do not reduce the barrier to dissociate H2 significantly. Our results show that Fe, Ni and Rh, and to some extent Co and Pd, are all exceptions, combining low activation barriers for both processes, with Ni being the best possible choice.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, ,