Article ID Journal Published Year Pages File Type
1274420 International Journal of Hydrogen Energy 2013 9 Pages PDF
Abstract

This study aims at investigating the effects of platinum (Pt) loadings on the cathodic reactions in Single Chamber Microbial Fuel Cells (SCMFCs) and developing cost-effective MFC operational protocols. The power generation of SCMFCs was examined with different Pt loadings (0.005–1 mgPt/cm2) on cathodes. The results showed that the power generation of the SCMFCs with 0.5–1 mgPt/cm2 were the highest in the tests, decreased 10–15% at 0.01–0.25 mgPt/cm2, and decreased further 10–15% at 0.005 mgPt/cm2. The SCMFCs with Pt-free cathode (graphite) had the lowest power generation. In addition, the power generation of SCMFCs with different Pt loadings were compared in raw wastewater (Chemical oxygen demand (COD): 0.36 g/L) and wastewater enriched with sodium acetate (COD: 2.95 g/L). The solution conductivity in SCMFCs decreased with the degradation of organic substrates. Daily polarization curves (V–I) showed a decrease in current generation and an increase in ohmic losses over the operational period (8 days). The SCMFCs (with 0.5–1 mgPt/cm2 at cathode) fed with wastewater and sodium acetate (NaOAc) reached the highest power generation (786 mW/m2), while the SCMFCs (with 0.5–1 mgPt/cm2 at cathode) fed only with wastewater obtained the lower power generation (81 mW/m2). The study demonstrated that lowering the Pt loadings in two magnitude orders (1 to 0.01, 0.5 to 0.005 mgPt/cm2) only reduced the power generation of 15–30%, and this reduction of the power generation become less substantial with the decrease in the solution conductivity of SCMFCs.

► Lowering Pt loadings by 2 magnitudes only reduced the power generation of 20–30%. ► Pt-free cathodes could still have stable power generation due to the biofilms growing on cathodes. ► The differences in power generation of cathodes with different Pt loadings became smaller at lower solution conductivity.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,