Article ID Journal Published Year Pages File Type
1274816 International Journal of Hydrogen Energy 2012 11 Pages PDF
Abstract

The present work reports the results of TiN-ions implantation into the SS316L samples as bipolar plates by a 4 kJ Mather type Plasma Focus (PF) device operated with nitrogen gas for 10, 20, and 30 shots in order to improve the corrosion resistance and electrical conductivity of samples. The PF can generate short lived (10–100 ns) but high temperature (0.1–2.0 keV) and high density (1018–1020 cm−3) plasma, and the whole process of PF lasts just a few microseconds. X-ray diffraction (XRD) results reveal the formation of a nanocrystalline titanium nitride coating on the surface of substrate. The interfacial contact resistance (ICR) of samples is measured, and the results show that the conductivity of samples increase after coating because of high electrical conductivity of TiN coating. The electrochemical results show that the corrosion resistances are significantly improved when TiN films are deposited into SS316L substrate. The corrosion potential of the TiN coated samples increases compared with that of the bare SSI316L and corrosion currents decrease in TiN implanted samples. Scanning Electron Microscopy (SEM) indicates changes in surface morphology before and after potentiostatic test. The thickness of coated layer which is obtained by cross sectional SEM is about 19 μm.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slideHighlights► TiN nanoparticle is implanted into SS316L using 4 kJ Plasma Focus. ► SS316L/TiN shows lower ICR and corrosion rate, and higher polarization resistance. ► TiN coated SS316L by plasma focus would be one of the best candidate for bipolar plates of PEMFC.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,