Article ID Journal Published Year Pages File Type
1274873 International Journal of Hydrogen Energy 2015 12 Pages PDF
Abstract

•Type IV high pressure hydrogen tanks were considered for five filling procedures.•Type IV tanks produce temperatures in excess of 85C for Case 1 filling.•1D methods can be used for mass and mass-averaged gas temperature predictions.•Safety assessment of Type IV tanks requires high-fidelity 3D modeling.•We show that final mass storage is sensitive to compressibility effects.

This paper describes the development of thermal models for the filling of high pressure hydrogen tanks with experimental validation. Two models are presented; the first uses a one-dimensional, transient, network flow analysis code developed at Sandia National Labs, and the second uses the commercially available CFD analysis tool Fluent. These models were developed to help assess the safety of Type IV high pressure hydrogen tanks during the filling process. The primary concern for these tanks is due to the increased susceptibility to fatigue failure of the liner caused by the fill process. Therefore, a thorough understanding of temperature changes of the hydrogen gas and the heat transfer to the tank walls is essential. The effects of initial pressure, filling time, and fill procedure were investigated to quantify the temperature change and verify the accuracy of the models. In this paper we show that the predictions of mass averaged gas temperature for the one and three-dimensional models compare well with the experiment and both can be used to make predictions for final mass delivery. Due to buoyancy and other three-dimensional effects, however, the maximum wall temperature cannot be predicted using one-dimensional tools alone which means that a three-dimensional analysis is required for a safety assessment of the system.

Keywords
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,