Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1275318 | International Journal of Hydrogen Energy | 2012 | 13 Pages |
In this paper, steam-iron process (Fe looping) and NiO-based chemical looping combustion (Ni looping) are integrated for hydrogen production with inherent separation of CO2. An integrated combined cycle based on the Fe and Ni loopings is proposed and modeled using Aspen Plus software. The simulation results show that at Fe-SR 815 °C, Fe-FR 815 °C, Ni-FR 900 °C and Ni-AR 1050 °C without supplementary firing, the co-production plant has a net power efficiency 14.12%, hydrogen efficiency 33.61% and an equivalent efficiency 57.95% without CO2 emission. At a supplementary firing temperature of 1350 °C, the net power efficiency, hydrogen efficiency and the equivalent efficiency are 27.47%, 23.39% and 70.75%, respectively; the CO2 emission is 365.36 g/kWh. The plant is attractive because of high-energy conversion efficiency and relatively low CO2 emission; moreover, the hydrogen/electricity ratio can be varied in response to demand. The influences of iron oxide recycle rate, supplementary firing temperature, inert support addition and other parameters on the system performance are also investigated in the sensitive analyses.
► CLC is integrated with steam-iron process for hydrogen production and CO2 capture. ► The co-production plant has high energy efficiency and a low CO2 emission. ► The hydrogen/electricity ratio can be varied in respond to demand. ► Parameters such as reactor temperature influence the plant performance.