Article ID Journal Published Year Pages File Type
1275461 International Journal of Hydrogen Energy 2012 11 Pages PDF
Abstract

Oil palm empty fruit bunch (OPEFB) was hydrolyzed with dilute sulfuric acid (6% v/v; 8 mL acid per g dry OPEFB) at 120 °C for 15-min to release the fermentable sugars. The hydrolysate contained xylose (23.51 g/L), acetic acid (2.44 g/L) and glucose (1.80 g/L) as the major carbon components. This hydrolysate was used as the sole carbon source for photofermentive production of hydrogen using a newly identified photosynthetic bacterium Rhodobacter sphaeroides S10. A Plackett–Burman experimental design was used to examine the influence of the following on hydrogen production: yeast extract concentration, molybdenum concentration, magnesium concentration, EDTA concentration and iron concentration. These factors influenced hydrogen production in the following decreasing order: yeast extract concentration > molybdenum concentration > magnesium concentration > EDTA concentration > iron concentration. Under the conditions used (35 °C, 14.6 W/m2 illumination, initial pH of 7.0), the optimal composition of the culture medium was (per L): mixed carbon in OPEFB hydrolysate 3.87 g, K2HPO4 0.9 g, KH2PO4 0.6 g, CaCl2⋅2H2O 75 mg, l-glutamic acid 795.6 mg, FeSO4⋅7H2O 11 mg, Na2MoO2⋅2H2O 1.45 mg, MgSO4⋅7H2O 2.46 g, EDTA 0.02 g, yeast extract 0.3 g). With this medium, the lag period of hydrogen production was 7.65 h, the volumetric production rate was 22.4 mL H2/L medium per hour and the specific hydrogen production rate was 7.0 mL H2/g (xylose + glucose + acetic acid) per hour during a 90 h batch culture of the bacterium. Under optimal conditions the conversion efficiency of the mixed carbon substrate to hydrogen was nearly 29%.

► Biohydrogen is produced using a new local isolate of Rhodobacter sphaeroides. ► A pretreated oil palm process waste stream is used as the sole carbon source. ► Optimal conditions are identified for the photofermentation. ► Total hydrogen production exceeds 2 L per liter of broth in a batch fermentation.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , ,