Article ID Journal Published Year Pages File Type
1275672 International Journal of Hydrogen Energy 2011 11 Pages PDF
Abstract

Polymer Electrolyte Membrane Direct Ethanol Fuel Cells (PEM-DEFC) offer the possibility of a carbon-neutral, easily-handled small-scale power source but suffer from disadvantages such as high anode over-potentials and fuel cross-over. In the present work, a comprehensive one-dimensional, single phase, isothermal mathematical model is developed for a liquid-feed PEM-DEFC, taking into account all the necessary mass transport and electrochemical phenomena on both the anode side and the cathode side. Tafel kinetics expressions (with appropriate kinetic data taken from the literature) have been used to describe the electrochemical oxidation of ethanol at the anode and the simultaneous ethanol oxidation and oxygen reduction reaction at the cathode. The model fully accounts for the mixed potential effect caused by ethanol cross-over at the cathode and is validated using the data from the literature. Model predictions over a range of operating conditions show that ethanol cross-over can cause a significant loss of fuel in terms of production of electricity. Under optimized conditions, it is shown that a PEM-DEFC can be operated at a current density of 0.3 A cm−2 with a power density of 0.1 W cm−2 with a fuel utilization factor of about 90%.

► Comprehensive model including kinetics and transport on both sides and the membrane. ► Model calibrated using literature data and requires no extra fitting parameters. ► Model can predict cross-over and polarization for a given cell. ► It has been used to identify the optimal set of parameters for a specific case.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, ,