Article ID Journal Published Year Pages File Type
1275945 International Journal of Hydrogen Energy 2013 10 Pages PDF
Abstract

Carbon-based materials are the most commonly used electrode material for anodes in microbial fuel cell (MFC), but are often limited by their surface areas available for biofilm growth and subsequent electron transfer process. This study investigated the use of activated carbon nanofibers (ACNF) as the anode material to enhance bacterial biofilm growth, and improve MFC performance. Qualitative and quantitative biofilm adhesion analysis indicated that ACNF exhibited better performance over the other commonly used carbon anodes (granular activated carbon (GAC), carbon cloth (CC)). Batch-scale MFC tests showed that MFCs with ACNF and GAC as anodes achieved power densities of 3.50 ± 0.46 W/m3 and 3.09 ± 0.33 W/m3 respectively, while MFCs with CC had a lower power density of 1.10 ± 0.21 W/m3 In addition, the MFCs with ACNF achieved higher contaminant removal efficiency (85 ± 4%) than those of GAC (75 ± 5%) and CC (70 ± 2%). This study demonstrated the distinct advantages of ACNF in terms of biofilm growth and electron transport. ACNF has a potential for higher power generation of MFCs to treat wastewaters.

► ACNF exhibited higher biofilm growth than carbon cloth (CC) and granular activated carbon (GAC). ► There is a clear correlation between anode biofilm growth and power generation in MFCs. ► ACNF exhibited higher power generation and COD removal than MFCs with CC and GAC.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , ,