Article ID Journal Published Year Pages File Type
1276175 International Journal of Hydrogen Energy 2014 8 Pages PDF
Abstract

•Electrodeposition of Ni–Fe coating as efficient electrode material for HER and OER.•Good corrosion resistance even in 6 M KOH medium.•Quantitative measurement of H2 and O2 and to study the effecting factors.•Ni–Fe coating at 6.0 & 2.0 Ad m−2 were most efficient for HER and OER, respectively.

This paper presents the electrodeposition protocol for development of a stable, inexpensive and efficient electrode material for water splitting reaction. Nanocrystalline Ni–Fe alloy coatings were deposited on copper electrode from acidic bath, at different cathode current densities (c.d). Coatings were tested for their electro-catalytic behaviours, namely for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 6 M KOH by cyclic voltammetry and chrono-potentiometry techniques. Experimental results demonstrated that these coatings can be used as potential material for water electrolysis. The corrosion stability of these coatings has also been tested in their working conditions (6 M KOH) by DC polarization method. The deposition conditions of Ni–Fe alloy were optimized for peak performance for both electro-catalytic reactions and corrosion stability. Ni–Fe alloy coatings deposited towards low and high c.d limits were found to be the better materials for OER and HER, respectively from same electrolytic solution. Further, Ni–Fe coating deposited at 6.0 Ad m−2 was found to be the most corrosion resistant. The structure-property relationship of electrodeposited coatings has been discussed by exploring PXRD, EDX and FESEM study.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, ,