Article ID Journal Published Year Pages File Type
1276513 International Journal of Hydrogen Energy 2014 9 Pages PDF
Abstract

•Zn0.5Cd0.5S-reduced graphene oxide photoanode could be created via a facile in-situ photoreduction method.•The stable photoanode owned enhanced photoelectrochemical activities.•The novel in-situ photoreduction strategy could be broadened to develop new graphene-based photoelectrodes.

Nanoporous Zn0.5Cd0.5S nanosheets/reduced graphene oxide (Zn0.5Cd0.5S/RGO) composites were prepared by a facile in-situ photoreduction method of graphene oxide (GO) in the presence of nanoporous Zn0.5Cd0.5S single-crystal-like nanosheets under visible light irradiation. The Zn0.5Cd0.5S/RGO photoelectrodes was characterized by TEM, IR and Raman spectra. Electrochemical measurements demonstrated that Zn0.5Cd0.5S/RGO photoelectrodes own a higher anodic photocurrent density, a lower zero current potential, and a higher photoelectrochemical response than that of pure Zn0.5Cd0.5S photoelectrodes under visible light irradiation under the same conditions. This high photochemical activity is predominately ascribed to the presence of RGO, which serves as the electron collector to efficiently prolong the lifetime of photoinduced electrons from the excited Zn0.5Cd0.5S nanosheets. In addition, the content of RGO in the composites had a remarkable influence on the photoelectrochemical behaviors of the photoelectrodes and the optimal RGO content was found to be 5 wt%. Zn0.5Cd0.5S/RGO composites at RGO content of 5 wt% reached a stable hydrogen production rate of 12.05 μmol h−1 cm−2 at an externally applied bias of 0.6 V. Furthermore, the Zn0.5Cd0.5S/RGO composites as photoelectrodes were found to be highly stable for hydrogen evolution reaction. The electrons stored in RGO are readily discharged or scavenged on demand by the applied positive bias to the counter electrode, and thus rectify the flow of electrons. Importantly, this work may open up a facile in-situ method for using RGO scaffold to create a stable photoelectrode with enhanced photoelectrochemical activities.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , ,