Article ID Journal Published Year Pages File Type
1277008 International Journal of Hydrogen Energy 2010 10 Pages PDF
Abstract

Kinetic modeling of methane decomposition to COx-free hydrogen and carbon nanofiber has been carried out in the temperature range 550–650 °C over Ni–Cu/MgO catalyst from CH4–H2 mixtures at atmospheric pressure. Assuming the different mechanisms of the reaction, several kinetic models were derived based on Langmuir–Hinshelwood type. The optimum value of kinetic parameters has been obtained by Genetic Algorithm and statistical analysis has been used for the model discrimination. The suggested kinetic model relates to the mechanism when the dissociative adsorption of methane molecule is the rate-determining stage and the estimated activation energy is 50.4 kJ/mol in agreement with the literature. The catalyst deactivation was found to be dependent on the time, reaction temperature, and partial pressures of methane and hydrogen. Inspection of the behavior of the catalyst activity in relation to time, led to a model of second order for catalyst deactivation.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,