Article ID Journal Published Year Pages File Type
1277117 International Journal of Hydrogen Energy 2012 12 Pages PDF
Abstract

A series of Ce-incorporated SBA-15 mesoporous materials were synthesized through direct hydrothermal synthesis method and further impregnated with 12 wt.% Ni. The samples were characterized by ICP-AES, XRD, N2 physisorption, XPS, TPR, H2 chemisorption, TGA, temperature-programmed hydrogenation (TPH) and TEM measurements. The low-angle XRD and N2 physisorption results showed the Ce successfully incorporated into the framework of SBA-15. The catalytic properties of these catalysts were investigated in methane reforming with CO2. The Ce/Si molar ratio had a significant influence on the catalytic performance. The highest catalytic activity and long-term stability were obtained over the Ni/Ce-SBA-15 (Ce/Si = 0.04) sample. The improved catalytic behavior could be attributed to the cerium impact in the framework of SBA-15, where cerium promoted the dispersion of nano-sized Ni species and inhibited the carbon formation. In comparison with the effect of CeO2 crystallites in SBA-15, cerium in the framework of SBA-15 promoted the formation of the nickel metallic particles with smaller size. The XRD and TGA results exhibited that carbon deposition was responsible for activity loss of Ni/SBA-15 and Ni/Ce-SBA-15 (Ce/Si = 0.06) catalysts. TEM results showed that the hexagonal mesopores of SBA-15 were still kept intact after reaction and the pore walls of SBA-15 prevented the aggregation of nickel.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,