Article ID Journal Published Year Pages File Type
1277251 International Journal of Hydrogen Energy 2009 6 Pages PDF
Abstract

The discharge capacities of lanthanum-rich mischmetal (LM)-Ni3.9Co0.6Mn0.3Al0.2 alloy electrodes are significantly degraded by an increase in the C rate. Nevertheless, the discharge capacity of alloy electrodes pretreated with KOH/NaBH4 is maintained higher than that of raw alloy electrodes, with the difference in discharge capacities between the raw and pretreated alloy electrodes more prominent at higher C rates. The charge retention of the electrodes decreases with increasing rest time. In particular, the charge retention of the pretreated alloy electrode is lower than that of the raw alloy electrode due to the higher self-discharge rate. The overvoltage for hydrogen evolution of the pretreated alloy electrode is superior to that of the raw alloy electrode, particularly at higher temperatures. This phenomenon indicates that the charge efficiency of the electrode was significantly improved by the surface pretreatment, resulting from its high surface catalytic activity. Repeated charge-discharge increases the inner pressure of the battery. Nevertheless, due to its higher charge efficiency and faster recombination rate, the inner pressure of the battery made using the pretreated alloy electrode is much smaller than that of the battery made using a raw alloy electrode.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,