Article ID Journal Published Year Pages File Type
1277301 International Journal of Hydrogen Energy 2016 11 Pages PDF
Abstract

•SCWG of fruit pulp was conducted in a batch reactor in the presence Ru/C catalyst.•Suitable reaction parameters were investigated to maximize the hydrogen yield.•The thermodynamic equilibrium analysis of the SCWG system was performed.•The numerical results are consistent with the presented experimental data.•The proposed model can be used for the optimization of the SCWG process.

In this work, supercritical water gasification of fruit pulp was conducted in a batch reactor in the presence of Ru/C catalyst. Reaction parameters such as temperature (673–873 K), time (0–60 min), biomass ratio (2.5–10wt.%) and catalyst ratio (0–40wt.%) on the composition of the gas products and gasification efficiency were investigated. Temperature has a significant effect on the gasification of fruit pulp; i.e the amount of hydrogen increased approximately over four times with an increment of temperature from 673 to 873 K. Maximum hydrogen yield was obtained as 54.8 mol H2/kg fruit pulp with a biomass ratio of 2.5%. The thermodynamic equilibrium analysis of the SCWG system was performed for different reaction temperatures and biomass ratios. The numerical results were compared with the experimental data to validate the proposed computational model. The comparisons are in good agreement showing that the model represents the experimental results accurately at temperatures above 773 K.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, ,