Article ID Journal Published Year Pages File Type
1277789 International Journal of Hydrogen Energy 2011 8 Pages PDF
Abstract

Fuel reforming processes are primarily used to generate hydrogen for fuel cells and in automotive internal combustion engines to improve combustion characteristics and emissions. In this study, biogas is used as the fuel source for the reforming process as it has desirable properties of being both renewable and clean. Two reforming processes (dry reforming and combined dry/oxidative reforming) are studied. Both processes are affected by the gas stream temperature and reactor space velocity with the second process being affected by O2/CH4 ratio as well. Our results imply that oxidative reforming is the dominant process at low exhaust temperatures. This provides heat for the dry reforming of biogas and the overall reforming is exothermic. Increase in O2/CH4 ratio at low temperature promotes hydrogen production. At high exhaust temperatures (>600 °C), dry reforming of biogas is dominant and the overall reaction is net endothermic.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,