Article ID Journal Published Year Pages File Type
1277801 International Journal of Hydrogen Energy 2011 13 Pages PDF
Abstract

Refineries have been looking for ways of improving the performance of the reformer by enhancing the octane number of the product via increasing the aromatics content. To reach this goal, more improved configurations should be investigated. The aromatics production rate could be enhanced by shifting the reactions to the production side by using hydrogen perm–selective membranes. In the present study, we have investigated theoretically the best combination of membrane tubular reactors and spherical radial-flow reactors for the conventional naphtha reforming unit consist of three fixed-bed reactors. Hydrogen permeation through the membrane shifts the reaction to the product side (aromatics and hydrogen) according to the thermodynamic equilibrium. Spherical reactors reduce the pressure drop in the catalytic naphtha reforming units and consequently increase the efficiency. The results show higher aromatics production in the new configurations compared with the membrane tubular and conventional reactors despite using lower membrane surface area.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,