Article ID Journal Published Year Pages File Type
1277826 International Journal of Hydrogen Energy 2011 5 Pages PDF
Abstract

The cobalt oxyphosphides supported on carbon black were prepared using incipient wetness method and characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The possibility of their application as the electrocatalyst for oxygen reduction reaction (ORR) in proton exchange membrane fuel cell (PEMFC) was investigated and the electrocatalytic activities were evaluated by the electrochemical measurements and single cell test, respectively. The electrocatalyst presents attractive catalytic activity towards ORR and good stability in acid media and exhibits an onset potential for oxygen reduction as high as 0.69 V (RHE) in H2SO4 solution. The maximum power density obtained in a H2/O2 PEMFC is 57 mW cm−2 with Co4P2O9/C loading of 1.13 mg cm−2. No significant performance degradation is observed over 50 h of continuous fuel cell operation. The combination of heteroatom P with nanostructured oxides with high stability, excellent functionality and low cost which are prerequisites for large-scale applications, probably provide a new solution for the critical challenge of finding effective cathode materials for PEMFC.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,