Article ID Journal Published Year Pages File Type
1278196 International Journal of Hydrogen Energy 2009 6 Pages PDF
Abstract

To determine the effects of pretreatment on hydrogen production and the hydrogen-producing microbial community, we treated the sludge from the intertidal zone of a bathing beach in Tianjin with four different pretreatment methods, including acid treatment, heat-shock, base treatment as well as freezing and thawing. The results showed that acid pretreatment significantly promoted the hydrogen production by sludge and provided the highest efficiency of hydrogen production among the four methods. The efficiency of the hydrogen production of the acid-pretreated sludge was 0.86 ± 0.07 mol H2/mol glucose (mean ± S.E.), whereas that of the sludge treated with heat-shock, freezing and thawing, base method and control was 0.41 ± 0.03 mol H2/mol glucose, 0.17 ± 0.01 mol H2/mol glucose, 0.11 ± 0.01 mol H2/mol glucose and 0.20 ± 0.04 mol H2/mol glucose, respectively. The result of denaturing gradient gel electrophoresis (DGGE) showed that pretreatment methods altered the composition of the microbial community that accounts for hydrogen production. Acid and heat pretreatments were favorable to enrich the dominant hydrogen-producing bacterium, i.e. Clostridium sp., Enterococcus sp. and Bacillus sp.. However, besides hydrogen-producing bacteria, much non-hydrogen-producing Lactobacillus sp. was also found in the sludge pretreated with base, freezing and thawing methods. Therefore, based on our results, we concluded that, among the four pretreatment methods using acid, heat-shock, base or freezing and thawing, acid pretreatment was the most effective method for promoting hydrogen production of microbial community.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,