Article ID Journal Published Year Pages File Type
1278377 International Journal of Hydrogen Energy 2012 9 Pages PDF
Abstract

A new metal-semiconductor-metal (MSM) hydrogen sensor was proposed to avoid (or to reduce) false alarms due to temperature drift when it is used in differential-pair hydrogen-sensing systems. A GaN semiconductor layer together with Pt as catalytic metal and Au as Schottky metal was employed to structure an Au–GaN–Pt MSM sensor. In particular, the structured Au–GaN–Pt MSM sensor can function as an active sensor and a reference sensor, depending on the polarity of applied voltage, in a differential-pair sensing circuit. Possible sensing mechanisms associated with the Au–GaN–Pt MSM sensor were described first to include band diagrams and graphical analysis. Experimental results reveal that an active sensor by forward-biasing the Au–GaN–Pt MSM sensor responses well to hydrogen-containing gases (50, 500, and 5000 ppm H2/N2) at various temperatures (25 °C, 50 °C, 70 °C, and 90 °C). High sensing current gains over 104 were obtained. Further, the Au–GaN–Pt MSM sensor can also be reverse-biased to act as a reference sensor which shows negligible responses to hydrogen-containing gases. The differential-pair sensing circuit with the proposed Au–GaN–Pt MSM sensor reduces false alarms due to ambient temperature variation while it provides a short detection time.

► A Au–GaN–Pt sensor for unidirectional sensing is structured. ► Active and reference sensors have the same device configuration. ► False alarms due to temperature drift are removed with a short detection time.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,