Article ID Journal Published Year Pages File Type
1278467 International Journal of Hydrogen Energy 2008 7 Pages PDF
Abstract

Fe3+ doped TiO2 photocatalysts were prepared by hydrothermal treatment for the photocatalytic water splitting to produce stoichiometric hydrogen and oxygen under visible light irradiation. It was found that hydrothermal treatment at 110 °C for 10 h was essential for the synthesis of highly stabilized Fe3+ doped TiO2 photocatalysts. The synthesized photocatalysts were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS) and BET surface area techniques. The doping of highly stabilized Fe3+ in the titania matrix leads to significant red shift of optical response towards visible light owing to the reduced band gap energy. Optimum amount of Fe3+ doped TiO2, 1.0 wt% Fe/TiO2, showed drastically improved hydrogen production performance of 12.5 μmol-H2/h in aqueous methanol and 1.8 μmol-H2/h in pure water, respectively. This Fe/TiO2 photocatalyst was stable for 36 h without significant deactivation in the water splitting reaction.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,