Article ID Journal Published Year Pages File Type
1278927 International Journal of Hydrogen Energy 2011 12 Pages PDF
Abstract

In this study, the effects of channel surface wettability, cross-sectional geometry and orientation on the two-phase flow in parallel gas channels of proton exchange membrane fuel cells (PEMFCs) are investigated. Ex situ experiments were conducted in flow channels with three different surface wettability (hydrophilically coated, uncoated, and hydrophobically coated), three cross-sectional geometries (rectangular, sinusoidal and trapezoidal), and two orientations (vertical and horizontal). Flow pattern map, individual channel flow variation due to maldistribution, pressure drop and flow visualization images were used to analyze the two-phase flow characteristics. It is found that hydrophilically coated gas channels are advantageous over uncoated or slightly hydrophobic channels regarding uniform water and gas flow distribution and favoring film flow, the most desirable two-phase flow pattern in PEMFC gas channels. Sinusoidal channels favor film flow and have lower pressure drop than rectangular and trapezoidal channels, while the rectangular and trapezoidal channels behave similarly to each other. Vertical channel orientation is advantageous over horizontal orientation because the latter is more prone to slug flow, nonuniform liquid water distribution and instable operation.

► Liquid water and air flow distribution is more uniform in hydrophilic channels. ► Sinusoidal channels favor film flow and have lower pressure drop. ► Vertical channel orientation is more advantageous over horizontal orientation.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,