Article ID Journal Published Year Pages File Type
1278939 International Journal of Hydrogen Energy 2011 7 Pages PDF
Abstract

Ceria-carbonate composite materials have been widely investigated as candidate electrolytes for solid oxide fuel cells operated at 300–600 °C. However, fundamental studies on the composite electrolytes are still in the early stages and intensive research is demanded to advance their applications. In this study, the crystallite structure, microstructure, chemical activity, thermal expansion behavior and electrochemical properties of the samaria doped ceria-carbonate (SCC) composite have been investigated. Single cells using the SCC composite electrolyte and Ni-based electrodes were assembled and their electrochemical performances were studied. The SCC composite electrolyte exhibits good chemical compatibility and thermal-matching with Ni-based electrodes. Peak power density up to 916 mW cm−2 was achieved at 550 °C, which was attributed to high electrochemical activity of both electrolyte and electrode materials. A stable discharge plateau was obtained under a current density of 1.5 A cm−2 at 550 °C for 120 min. In addition, the ionic conducting property of the SCC composite electrolyte was investigated using electrochemical impedance spectroscopy technique. It was found that the hybrid-ionic conduction improves the total ionic conductivity and fuel cell performance. These results highlight potential low-temperature application of ceria-carbonate composite electrolytes for solid oxide fuel cells.

► Ceria-carbonate composite is employed as electrolyte for low-temperature SOFCs. ► Composite electrolyte shows good chemical & thermal compatibility with Ni-based electrodes. ► A maximum power density of 916.2 mW cm−2 is obtained at 550 °C. ► Fuel cell keeps stable under a high discharging current density of 1.5 A cm−2 for 120 min. ► The hybrid-ionic conduction property of composite electrolyte is studied by electrochemical impedance spectroscopy technique.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,