Article ID Journal Published Year Pages File Type
1279080 International Journal of Hydrogen Energy 2008 16 Pages PDF
Abstract

The effect of hydrogen on fatigue crack growth behavior of three stainless steels has been investigated from the viewpoint of microscopic fatigue mechanisms, martensitic transformation and hydrogen content. Fatigue crack growth rates in the hydrogen-charged SUS304 and SUS316 were accelerated with respect to crack growth rates in uncharged specimens. The crack growth rate in the hydrogen-charged SUS316L was only slightly higher than that in the uncharged SUS316L. Martensitic transformation on the fatigue fracture surfaces was detected using X-ray diffraction both in the hydrogen-charged and uncharged specimens of SUS304, SUS316 and SUS316L. Materials with increased tendency for martensitic transformation also showed increased acceleration in fatigue crack growth rate due to hydrogen. It was concluded that martensitic transformation in the vicinity of the fatigue crack tip increased the local diffusion of hydrogen thus increasing crack growth rate.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , ,