Article ID Journal Published Year Pages File Type
1279511 International Journal of Hydrogen Energy 2011 8 Pages PDF
Abstract

In this study we employed the ReaxFF reactive force field to examine the dynamics associated with the dissociation of adsorbed water molecules on an aluminum nanocluster surface. We have investigated several different concentrations of water on an Al100 cluster to elucidate the dynamics of the dissociation phenomena. Our results indicate that the dissociation of an isolated water molecule on the surface requires significant activation energy, and that an assisted dissociation by a neighboring, non-adsorbed, water molecule is more energetically favorable. The dynamics of this reaction pathway are discussed and compared to recent quantum studies along with a further investigation of the role inert gases and oxide layers have on these processes. Our results shed light on this atomic scale behavior and increase the potential for reactive metal/water systems to be used as lightweight, portable, and on-demand energy sources via fast hydrogen gas production.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,