Article ID Journal Published Year Pages File Type
1279544 International Journal of Hydrogen Energy 2011 5 Pages PDF
Abstract

BaCo0.7Fe0.2Nb0.1O3−δ(BCFN)/Ce0.8Sm0.2O1.9(SDC) composite material was prepared and characterized as cathode for intermediate temperature solid oxide fuel cells. The X-ray diffraction result proved that there was no obvious reaction between the BCFN and SDC after calcination at 1000 °C for 10 h. AC impedance spectra based on La0.9Sr0.1Ga0.8Mg0.2O3−δ(LSGM) electrolyte measured at intermediate temperatures showed that a cathode with 30 wt% SDC exhibited the best electrochemical performance among the electrodes studied. The interfacial resistance value for BCFN/30SDC was as low as 0.0104, 0.017, 0.029, and 0.062 Ω cm2 at 800, 750, 700 and 650 °C, respectively. The maximum power density of a single cell with BCFN/30SDC cathode, Ni0.9Cu0.1-SDC anode, and LSGM/SDC electrolyte was 209.7, 298.2, 407.1, 543.4 and 697.9 mW cm−2 at 600, 650, 700, 750 and 800 °C.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , , ,