Article ID Journal Published Year Pages File Type
1279844 International Journal of Hydrogen Energy 2008 8 Pages PDF
Abstract

Sodium borohydride (NaBH4)(NaBH4) is a promising candidate for storing hydrogen in portable fuel cell systems. In order to reduce the volume and cost of the hydrogen generation systems, a high-performance catalyst containing a less precious metal is imperative. In this present investigation, a number of metal alloy compositions are compared in a high throughput screening (HTS) test. In the case of tertiary alloy suspension, the hydrogen release rate of Ru60Co20Fe20Ru60Co20Fe20 shows highest H2H2 release (26.8Lmin-1g-1). In the case of the activated carbon fiber (ACF) supported ruthenium catalyst, the reduction process plays an important role in both the particle size of the formed catalyst and consequent enhancement of the hydrogen release rate. Ru60Co20Fe20/ACFRu60Co20Fe20/ACF showed its highest hydrogen release rate at 41.73Lmin-1gRu-1. The prepared catalysts were analyzed by XRD and XPS spectra. The suitability of the catalyst in the real proton exchange membrane fuel cell application has been examined and it shows the applicability for common use.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , , ,