Article ID Journal Published Year Pages File Type
1280159 International Journal of Hydrogen Energy 2007 21 Pages PDF
Abstract

The present work considers the concept of photoelectrochemical generation of hydrogen through water splitting using solar energy (solar-hydrogen). The focus is on functional material properties that are essential for the performance of photoelectrochemical cell for solar-hydrogen. The performance of the cell is discussed in terms of the energy conversion efficiency (ECE). It is argued that TiO2 and TiO2-based materials are the most promising candidates for photoelectrodes for solar-hydrogen. The modification of TiO2 in order to achieve desired performance parameters is discussed in terms of the electronic structure, concentration of charge carriers and segregation-induced surface properties, which are critical to the ECE. Challenges to the development of a bi-photoelectrode cell, equipped with both n-type and p-type TiO2, forming photoanode and photocathode, respectively, are discussed. The research strategies and pressing issues related to the optimization of key functional properties necessary for the commercialization of solar-hydrogen are outlined. It is shown that defect chemistry is the most appropriate framework for tailoring the functional properties of TiO2-based oxide systems in order to obtain high-performance photoelectrodes. The present work provides an overview of the research progress on solar-hydrogen.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,