Article ID Journal Published Year Pages File Type
1280297 International Journal of Hydrogen Energy 2010 6 Pages PDF
Abstract

Power systems based on fuel cells have been considered for residential and commercial applications in energy Distributed Generation (DG) markets. In this work we present an experimental analysis of a power generation system formed by a 5 kW proton exchange membrane fuel cell (PEMFC) unit and a natural gas reformer (fuel processor) for hydrogen production. The performance analysis developed simultaneously the energy and economic viewpoints and enabled the determination of the best technical and economic conditions of this energy generation power plant, and the best operating strategies, enabling the optimization of the overall performance of the stationary cogeneration fuel cell unit. It was determined the electrical performance of the cogeneration system in function of the design and operational power plant parameters. Additionally, it was verified the influence of the activation conditions of the fuel cell electrocatalytic system on the system performance. It also appeared that the use of hydrogen produced from the natural gas catalytic reforming provided the system operation in excellent electrothermal stability conditions resulting in increase of the energy conversion efficiency and of the economicity of the cogeneration power plant.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,