Article ID Journal Published Year Pages File Type
1280569 International Journal of Hydrogen Energy 2010 8 Pages PDF
Abstract

We prepared a Mg-2 mass % multiwall carbon nanotubes composite employing a powder metallurgy technique. The kinetics of hydrogen absorption/desorption of the as-synthesized composite was much faster than that of reference samples of pure Mg. The pressure-composition isotherm (measured at 300 °C) of the as-synthesized composite exhibited no measurable pressure hysteresis, with the equilibrium hydrogen pressures in the plateau region being higher than those of pure Mg by a factor of up to 1.8. Equal channel angular pressing of the as-synthesized composite led to a slow down of the absorption/desorption processes at the initial stages of the processes, and to their acceleration at the later stages. We suggested that the mechanism responsible for the good kinetic performance of the as-synthesized composite was fast diffusion of hydrogen through the cores of carbon nanotubes. We put forward a hypothesis relating the increase in equilibrium hydrogen pressure in the as-synthesized composite to the elastic constraints imposed by carbon nanotubes on the Mg matrix.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,