Article ID Journal Published Year Pages File Type
1280774 International Journal of Hydrogen Energy 2010 13 Pages PDF
Abstract

The electrocatalytic oxidation of methanol was studied on Ni–P and Ni–Cu–P supported over commercial carbon electrodes in 0.1 M KOH solution. Cyclic voltammetry and chronoamperometry techniques were employed. Electroless deposition technique was adopted for the preparation of these catalysts. The effect of the electroless deposition parameters on the catalytic activity of the formed samples was examined. They involve the variation of the deposition time, pH and temperature. The scanning electron micrography showed a compact Ni–P surface with a smooth and low porous structure. A decreased amount of nickel and phosphorus was detected by EDX analysis in the formed catalyst after adding copper to the deposition solution. However, an improvement in the catalytic performance of Ni–Cu–P/C samples was noticed. This is attributed to the presence of copper hydroxide/nickel oxyhydroxide species. It suppresses the formation of γ-NiOOH phase and stabilizes β-NiOOH form. Linear dependence of the oxidation current density on the square root of the scan rate reveals the diffusion controlled behaviour.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, ,